装饰器

代码运行期间动态增加功能的方式,称之为“装饰器”(Decorator)。本质上,decorator就是一个返回函数的高阶函数。

定义一个打印日志的decorator

1
2
3
4
5
def log(func):
    def wrapper(*args, **kw):
        print('call %s():' % func.__name__)
        return func(*args, **kw)
    return wrapper

借助Python的@语法,把decorator置于函数的定义处:

1
2
3
4
5
@log
def now():
    print('2015-3-25')

now()

执行以上程序会输出如下结果:

1
2
call now():
2015-3-25

把@log放到now()函数的定义处,相当于执行了语句:
now = log(now)
在面向对象(OOP)的设计模式中,decorator被称为装饰模式。OOP的装饰模式需要通过继承和组合来实现,而Python除了能支持OOP的decorator外,直接从语法层次支持decorator。Python的decorator可以用函数实现,也可以用类实现。

装饰器本质上是一个 Python函数或类,它可以让其他函数或类在不需要做任何代码修改的前提下增加额外功能,装饰器的返回值也是一个函数/类对象。它经常用于有切面需求的场景,比如:插入日志、性能测试、事务处理、缓存、权限校验等场景,装饰器是解决这类问题的绝佳设计。有了装饰器,我们就可以抽离出大量与函数功能本身无关的雷同代码到装饰器中并继续重用。概括的讲,装饰器的作用就是为已经存在的对象添加额外的功能。

先来看一个简单例子:

1
2
def foo():
    print('i am foo')

现在有一个新的需求,希望可以记录下函数的执行日志,于是在代码中添加日志代码:

1
2
3
def foo():
    print('i am foo')
    logging.info("foo is running")

如果函数 bar()、bar2() 也有类似的需求,怎么做?再写一个logging在bar函数里?这样就造成大量雷同的代码,为了减少重复写代码,我们可以这样做,重新定义一个新的函数:专门处理日志 ,日志处理完之后再执行真正的业务代码

1
2
3
4
5
6
def use_logging(func):
    logging.warn("%s is running" % func.__name__)
    func()
def foo():
    print('i am foo')
use_logging(foo)

这样做逻辑上是没问题的,功能是实现了,但是我们调用的时候不再是调用真正的业务逻辑foo函数,而是换成了use_logging 函数,这就破坏了原有的代码结构, 现在我们不得不每次都要把原来的那个foo函数作为参数传递给use_logging 函数,那么有没有更好的方式的呢?当然有,答案就是装饰器。

简单装饰器

1
2
3
4
5
6
7
8
9
def use_logging(func):
    def wrapper():
        logging.warn("%s is running" % func.__name__)
        return func()   # 把foo 当做参数传递进来时,执行func()就相当于执行foo()
    return wrapper
def foo():
    print('i am foo')
foo = use_logging(foo)  # 因为装饰器 use_logging(foo) 返回的时函数对象 wrapper,这条语句相当于foo = wrapper
foo()

use_logging就是一个装饰器,它一个普通的函数,它把执行真正业务逻辑的函数func 包裹在其中,看起来像 foo被use_logging装饰了一样,use_logging返回的也是一个函数,这个函数的名字叫wrapper。在这个例子中,函数进入和退出时,被称为一个横切面,这种编程方式被称为面向切面的编程。

@语法糖

如果你接触Python有一段时间了的话,想必你对@符号一定不陌生了,没错@符号就是装饰器的语法糖,它放在函数开始定义的地方,这样就可以省略最后一步再次赋值的操作。

1
2
3
4
5
6
7
8
9
def use_logging(func):
    def wrapper():
        logging.warn("%s is running" % func.__name__)
        return func()
    return wrapper
@use_logging
def foo():
    print("i am foo")
foo()

如上所示,有了@ ,我们就可以省去foo=use_logging(foo)这一句了,直接调用 foo() 即可得到想要的结果。你们看到了没有,foo()函数不需要做任何修改,只需在定义的地方加上装饰器,调用的时候还是和以前一样,如果我们有其他的类似函数,我们可以继续调用装饰器来修饰函数,而不用重复修改函数或者增加新的封装。这样,我们就提高了程序的可重复利用性,并增加了程序的可读性。 装饰器在Python使用如此方便都要归因于 Python的函数能像普通的对象一样能作为参数传递给其他函数,可以被赋值给其他变量,可以作为返回值,可以被定义在另外一个函数内。

*args、**kwargs

可能有人问,如果我的业务逻辑函数foo需要参数怎么办?比如:

1
2
def foo(name):
    print("i am %s" % name)

我们可以在定义 wrapper 函数的时候指定参数:

1
2
3
4
def wrapper(name):
        logging.warn("%s is running" % func.__name__)
        return func(name)
    return wrapper

这样foo函数定义的参数就可以定义在wrapper函数中。这时,又有人要问了,如果 foo 函数接收两个参数呢?三个参数呢?更有甚者,我可能传很多个。当装饰器不知道 foo到底有多少个参数时,我们可以用*args来代替:

1
2
3
4
def wrapper(*args):
        logging.warn("%s is running" % func.__name__)
        return func(*args)
    return wrapper

如此一来,甭管 foo 定义了多少个参数,我都可以完整地传递到func中去。这样就不影响foo的业务逻辑了。这时还有读者会问,如果foo函数还定义了一些关键字参数呢?比如:

1
2
def foo(name, age=None, height=None):
    print("I am %s, age %s, height %s" % (name, age, height))

这时,你就可以把wrapper函数指定关键字函数:

1
2
3
4
5
def wrapper(*args, **kwargs):
        # args是一个数组,kwargs一个字典
        logging.warn("%s is running" % func.__name__)
        return func(*args, **kwargs)
    return wrapper

带参数的装饰器

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
def use_logging(level):
    def decorator(func):
        def wrapper(*args, **kwargs):
            if level == "warn":
                logging.warn("%s is running" % func.__name__)
            elif level == "info":
                logging.info("%s is running" % func.__name__)
            return func(*args)
        return wrapper
    return decorator
@use_logging(level="warn")
def foo(name='foo'):
    print("i am %s" % name)
foo()

上面的 use_logging 是允许带参数的装饰器。它实际上是对原有装饰器的一个函数封装,并返回一个装饰器。我们可以将它理解为一个含有参数的闭包。当我 们使用@use_logging(level=“warn”)调用的时候,Python 能够发现这一层的封装,并把参数传递到装饰器的环境中。
@use_logging(level=“warn”)等价于@decorator

类装饰器

相比函数装饰器,类装饰器具有灵活度大、高内聚、封装性等优点。使用类装饰器主要依靠类的call方法,当使用@形式将装饰器附加到函数上时,就会调用此方法。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
class Foo(object):
    def __init__(self, func):
        self._func = func
    def __call__(self):
        print ('class decorator runing')
        self._func()
        print ('class decorator ending')
@Foo
def bar():
    print ('bar')
bar()

functools.wraps

使用装饰器极大地复用了代码,但是他有一个缺点就是原函数的元信息不见了,比如函数的docstring、__name__、参数列表,先看例子:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
# 装饰器
def logged(func):
    def with_logging(*args, **kwargs):
        print func.__name__      # 输出 'with_logging'
        print func.__doc__       # 输出 None
        return func(*args, **kwargs)
    return with_logging
# 函数
@logged
def f(x):
   """does some math"""
   return x + x * x
logged(f)

不难发现,函数 f 被with_logging取代了,当然它的docstring,name就是变成了with_logging函数的信息了。好在我们有functools.wraps,wraps本身也是一个装饰器,它能把原函数的元信息拷贝到装饰器里面的func函数中,这使得装饰器里面的 func函数也有和原函数foo 一样的元信息了。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
from functools import wraps
def logged(func):
    @wraps(func)
    def with_logging(*args, **kwargs):
        print(func.__name__)    # 输出 'f'
        print(func.__doc__)     # 输出 'does some math'
        return func(*args, **kwargs)
    return with_logging
@logged
def f(x):
   """does some math"""
   return x + x * x

装饰器顺序

一个函数还可以同时定义多个装饰器,比如:

1
2
3
4
5
@a
@b
@c
def f ():
    pass

它的执行顺序是从里到外,最先调用最里层的装饰器,最后调用最外层的装饰器,它等效于 f = a(b(c(f))) ​


转载请注明本网址。